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ABSTRACT

The primary objective of this paper is to examine the impact of variable viscosity and thermal conductivity on peristaltic transport of Casson liquid
in a convectively heated inclined porous tube. The viscosity differs over the radial axis, and temperature dependent thermal conductivity is taken
into account. The perturbation technique is utilized to solve the governing nonlinear equations under the assumption of long wavelength and small
Reynolds number. The analytical solutions are obtained for velocity, streamlines, pressure rise, frictional force, and temperature when subjected to
slip and convective boundary conditions. The impacts of related parameters on physiological quantities of interest are discussed and analyzed through
graphs. It is seen that the variable viscosity has a noteworthy part in upgrading the velocity profiles. The investigation additionally demonstrates that
the size of trapped bolus diminishes with an expansion in the velocity slip parameter.
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1. INTRODUCTION

Peristaltic mechanism of Newtonian/non-Newtonian liquids assumes a
critical part in understanding the physiological behavior of various bio-
logical fluids. Specifically, in the movement of blood flow in small arter-
ies and the chyme transport in the gastrointestinal tract helps the biomed-
ical engineers to design and construct dialysis and heart-lung machines.
The mechanism of peristalsis can be found in various regular frameworks,
for instance, bolus transport through the esophagus, the advancement of
spermatozoa in the cervical channel of the male reproductive tract and
the stream of urine through the ureter. The early literature on peristaltic
stream was carried out by taking Newtonian fluid with different suppo-
sition and geometries (Shapiro et al. (1969)). But most of the liquids
occurring in nature are non-Newtonian, where there exists a nonlinear
relation between stress and strain. Mainly, a significant portion of the
biological fluids like blood and chyme transport in gastrointestinal tracts
fall under the non-Newtonian classifications. Thus, it is necessary to ana-
lyze the flow behavior of these liquids by considering the non-Newtonian
fluid models. Keeping this in mind, Raju and Devanathan (1972) inves-
tigated the non-Newtonian behavior of peristaltic transport by using the
power law model. Vajravelu et al. (2005) analyzed the peristaltic trans-
port of Herschel-Bulkley fluid in a slanted tube and compared the results
for Newtonian, Power-law and Bingham-Plastic models. Recently, Ra-
jashekhar et al. (2018) investigated the peristaltic transport of two-layered
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blood flow in an axisymmetric tube.
The impacts of heat transfer on classical and biological fluids play a sig-
nificant role in nuclear plants, bioengineering devices and have different
applications in industries. The heat transfer in most of the systems can
occur in three modes; convection, conduction, and radiation. Specifically,
the convective way of heat transfer plays an essential role in understand-
ing the heat exchange between many biological tissues. Additionally, the
impact of porosity along with heat transfer has been of vital importance
because of its application in understanding the different mechanism in
lungs, gallbladder, movement of blood flow through narrow arteries, and
so on. In the human body, a substantial part of the muscle is subjected
to porous structures. These structures are necessary to supply the supple-
ments to each cell, and their proper working fundamentally relies on the
blood coursing through them. In such circumstances, the nearness of slip
on the boundary because of the porosity of the wall has an essential influ-
ence in examining the flow of blood in arteries. Motivated by the applica-
tions of porosity along with the convective conditions at the walls, Akbar
(2014) analyzed the peristaltic transport of a nanofluid flowing through
porous channels with convective boundary conditions. Recently, several
researchers have examined the heat transfer characteristics on classical
and biological fluids in different geometries and configurations (Nadeem
and Akbar (2009); Ramesh (2016); Hayat et al. (2016); Mebarek-Oudina
and Bessaih (2016); Kumar and Abzal (2017); Wakif et al. (2018a,b,c);
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Sankad and Patil (2018)).
Among the several non-Newtonian models (Hayat et al. (2018a,b,c); Vaidya
et al. (2018)) the Casson model is more appropriate for understanding the
complex rheological behavior of blood. Srivastava and Srivastava (1984)
investigated the peristaltic transport by utilizing the Casson model for the
flow of blood. Mernone et al. (2002) examined the two-layered peristaltic
transport by employing the Casson model and inferred that the Casson
model could be utilized for investigating the physiological behavior of
blood in small arteries and urine flow through the ureter. Ramesh and De-
vakar (2015) examined the impact of slip velocity on peristaltic transport
of Casson fluid. Recently, various researchers have utilized the Casson
model to understand the complex behavior of many classical and biolog-
ical fluids in different geometries and configuration (Khalid et al. (2015);
Vajravelu et al. (2017); Manjunatha and Rajashekhar (2018); Khan et al.
(2018); Zia et al. (2018)).
The more significant part of the above examinations has investigated
the Newtonian/non-Newtonian characteristics of the fluid flow by tak-
ing constant thermophysical properties of the fluid. These properties may
change regarding temperature variation, especially the thermal conduc-
tivity. Therefore, it is essential to consider these properties to explore the
peristaltic transport of biological fluids in various geometries and con-
figurations. Thus, considering variable liquid properties will give rise to
the broader understanding of classical and biological fluids (Hayat et al.
(2014); Hussain et al. (2015); Prasad et al. (2017a,b)). Along these lines,
the supposition of constant viscosity fails to clear up the peristaltic mech-
anism involved in blood flow, lymphatic vessels and bolus transport in the
esophagus. In these organs, the viscosity of the fluid contrasts over the
thickness of the channel/tube (Hayat and Ali (2008); Sinha et al. (2015);
Bhatti and Zeeshan (2016)).
Inspired by the examinations carried out by different researchers, the en-
deavor has been made to investigate the peristaltic transport of Casson
liquid under the influence of variable viscosity, thermal conductivity and
convective boundary conditions in an inclined porous tube. The govern-
ing nonlinear equations are solved by using perturbation technique sub-
jected to slip and convective boundary conditions. The analytical solu-
tions are obtained for velocity, streamlines, flow rate, pressure rise, fric-
tional force, and temperature. Furthermore, the influences of appropriate
parameters on physiological quantities of interest are analyzed and dis-
cussed graphically.

2. FORMULATION OF THE PROBLEM

Consider the peristaltic transport of incompressible viscous liquid in an
inclined tube of radius a (Fig. 1). Casson model is used to represents
the non-Newtonian behavior of the fluid. The flow happens through an
axisymmetric porous tube and encourages the decision of fixed frame
(R,Θ, Z) to study the problem. Let u and w be the radial and axial
velocity components respectively. In the region between r = 0 and r =
rp (plug flow region), we have τrz ≤ τ0 . The region between r =
rp and r = H (core region), we have considered τrz ≥ τ0. The wall
deformation due to a sinusoidal wave trains traveling with the wave speed
c along the walls of a distensible tube is given by (Nadeem and Akbar
(2009))

H(z, t) = a+ b sin

[
2π

λ
(z − ct)

]
(1)

where b is the amplitude, z is the axial coordinate, λ is the wavelength
and t is the time.
The flow turns out to be steady in the wave frame (r, θ, z) moving with

velocity c from the fixed frame (R,Θ, Z) given by (Nadeem and Akbar
(2009))

r = R, z = Z − ct, ψ = Ψ− R2

2
, p(Z, t) = P (z), θ = Θ (2)

Fig. 1 Geometry of a peristaltic transport through an inclined axisymmet-
ric porous tube.

where ψ and Ψ are stream functions, p and P are pressures, in wave and
fixed frames of references, respectively.
The expressions for variable thermal conductivity and variable viscosity
are given by (Hayat et al. (2014); Sinha et al. (2015))

k(θ) = 1 + φθ, µ(r) = 1− α1r for φ << 1 and α1 << 1 (3)

where φ and α1 are the coefficients of variable thermal conductivity and
variable viscosity respectively.
To non-dimensionalize the mathematical formulation, we define the fol-
lowing non-dimensional quantities

r̄ =
r

a
, z̄ =

z

λ
, t̄ =

ct

λ
, τ̄0 =

τ0a

µ0c
, ¯τrz =

τrza

µ0c
, p̄ =

pa2

λcµ0
, r̄p =

rp
c
,

ε =
b

a
, F1 =

µ0c

ρga2
,Re =

ρca

µ0
, Pr =

µ0cp
k

, θ =
T − T0

T0
, w̄ =

w

c
,

ū =
u

c
,Ec =

c2

cpT0
, δ =

a

λ
, τ̄a =

τaa

µ0c
, ¯µ(r) =

µ(r)

µ0
(4)

The non-dimensional equations of motion and energy in the wave frame
of reference, moving with velocity c, under the lubrication approach is as
follows (Nadeem and Akbar (2009)):

Reδ
(
u
∂

∂r
+ w

∂

∂z

)
w = −∂p

∂z
+

1

r

∂

∂r
(τrz) + δ

∂

∂r
(τzz) (5)

Reδ3
(
u
∂

∂r
+ w

∂

∂z

)
u = −∂p

∂r
+
δ

r

∂

∂r
(τrr) + δ2

∂

∂r
(τrz) (6)

ReδPr
(
u
∂

∂r
+ w

∂

∂z

)
θ = Br

(
δ
∂u

∂r
τrr +

∂w

∂r
τrz + δ2

∂u

∂r
τzr

+τzz
∂w

∂r
δ

)
+
∂2θ

∂r2
+

1

r

∂θ

∂r
+ δ2

∂2θ

∂z2
(7)

where u and w are the radial and axial velocities, Re is the Reynolds
number, θ is the temperature, δ is the wave number, Pr is the Prandtl
number, Br is Brinkman number, r is the radial coordinate and τ is the
shear stress.
The constitutive equation for Casson’s fluid in the non-dimensional form
is given by (Casson (1959))

∂w

∂r
= −

(
1

µ(r)
[
√
τrz −

√
τ0]

)2

, τrz ≥ τ0 (8)

∂w

∂r
= 0, τrz ≤ τ0 (9)
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Incorporating Eq. (8) in Eqs. (5)-(7), and by using long wavelength and
small Reynolds number approximation, we obtain

1

r

∂

∂r

r(µ 1
2

[
∂w

∂r

] 1
2

)2
 = −∂p

∂z
+
sinβ

F1
(10)

0 =
∂p

∂r
(11)

1

r

(
rk(θ)

∂θ

∂r

)
= Br

−∂w
∂r

[
µ

1
2

(
∂w

∂r

) 1
2

+ τ
1
2
0

]2 (12)

The corresponding non-dimensional slip and convective boundary condi-
tions are (Hayat et al. (2014))

h
∂w

∂r
= − αw√

Da
,
∂θ

∂r
+Biθ = 0 at r = h (13)

∂θ

∂r
= 0, τrz is finite at r = 0 (14)

where α is the velocity slip parameter, Da is the porous parameter and
Bi is the Biot number.

3. SOLUTION OF THE PROBLEM

The closed form solutions for the velocity in the core region is obtained
by solving Eqs. (10) and (11) with the boundary conditions (13) and (14).
We obtain the velocity expression as

w =
P + f

2

[
1

α2
1

(
α1(r − h)− 4α1(

√
rrp −

√
hrp) + 4

√
α1rp

(tanh−1√α1r − tanh−1
√
α1h) + (1 + α1rp)log

1− α1r

1− α1h

)
+

h
√
Da

α(1− α1h)
(h+ rp −

√
hrp)

]
(15)

where P = − ∂p
∂z

and f = sinβ
F1

.

Using the condition τ0 =
Prp
2

at r = rp, the upper limit of plug flow
region is obtained as rp = 2τ0

P
. Also, by using the condition τrz = τh at

r = h (Bird et al. (1976)), we obtain

P =
2τh
h

(16)

Hence,
rp
h

=
τ0
τh

= τ (17)

Using relation (17) in Eq. (15), we obtain the plug flow velocity as

wp =
P + f

2

[
1

α2
1

(
α1(rp − h)− 4α1(rp −

√
hrp) + 4

√
α1rp

(tanh−1√α1rp − tanh−1
√
α1h) + (1 + α1rp)

log

(
1− α1rp
1− α1h

))
+

h
√
Da

α(1− α1h)
(h+ rp −

√
hrp)

]
(18)

Integrating Eqs. (15) and (18) and using the conditions ψp = 0 at r = 0
and ψ = q

2
at r = h, the stream function for rp ≤ r ≤ h is given by

ψ =
q

2
− P + f

2
[G1 +G2 −G3 −G4 −G5 −G6 −G7

−G8 +G9 −G10 −G4] (19)

and stream function for plug flow in the region 0 ≤ r ≤ rp can be written
as

ψp =
(P + f)r2

4

[
1

α2
1

(
α1(rp − h)− 4α1(rp −

√
hrp)+

4
√
α1rp(tanh

−1√α1rp − tanh−1
√
α1h) + (1 + α1rp)

log

(
1− α1rp
1− α1h

))
+

h
√
Da

α(1− α1h)
(h+ rp −

√
hrp)

]
(20)

The instantaneous volumetric flow rate in the wave frame is given by

q = 2

[∫ rp

0

wp r dr +

∫ h

rp

w r dr

]
(21)

q =
P + f

60α

[
G12(1 + α1h) +

G13

α4
1

+
G14

α3
1

+
G15

α
7
2
1

+
G16

α2
1

+
G17

α1
+G18

]−1

(22)

Thus, we have

∂p

∂z
= f − 60αq

[
G12(1 + α1h) +

G13

α4
1

+
G14

α3
1

+
G15

α
7
2
1

+
G16

α2
1

+
G17

α1
+G18

]−1

(23)

The dimensionless time-averaged flux (Q̄) across one wavelength is

Q̄ =

∫ 1

0

∫ h

0

r(w − 1) dr dz = q +

∫ 1

0

h2 dz = q + 1 +
ε2

2
(24)

The non-dimensional expression for pressure rise (∆P ) across one wave-
length is given as follows:

∆P =

∫ 1

0

∂p

∂z
dz (25)

The presence of nonlinear terms in heat transfer Eq. (12) makes it highly
complex and hence it is difficult to get an exact solution. However, in the
larger part of the practical problems, the value of φ is small which enables
us to utilize a perturbation procedure to solve the nonlinear equation.

3.1. Perturbation Method

In order to obtain the perturbed solution about the temperature Eq. (12),
the following procedure is employed. Expansion of θ leads to

θ =

∞∑
n=0

φnθn (26)

3.1.1. Zeroth order system

1

r

(
rk(θ0)

∂θ0
∂r

)
= Br

−∂w
∂r

[
µ

1
2

(
∂w

∂r

) 1
2

+ τ
1
2
0

]2(27)

∂θ0
∂r

+Biθ0 = 0 at r = h (28)

∂θ0
∂r

= 0 at r = 0 (29)

3.1.2. First order system

1

r

(
rk(θ1)

∂θ1
∂r

)
= Br

−∂w
∂r

[
µ

1
2

(
∂w

∂r

) 1
2

+ τ
1
2
0

]2(30)

∂θ1
∂r

+Biθ1 = 0 at r = h (31)

∂θ1
∂r

= 0 at r = 0 (32)

On solving zeroth and first order system, and neglecting the terms higher
than O(φ), we obtain the solution for temperature.
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4. RESULTS AND DISCUSSION

The Eq (25) is numerically integrated by using Weddle’s rule in MAT-
LAB. This section illustrates the role of physiological quantities such as
axial velocity (w), pressure rise (∆P ), time averaged flow rate (Q̄) and
trapping phenomenon (ψ) on the peristaltic transport of Casson fluid. On
the other hand, the role of variable thermal conductivity (φ) and convec-
tive boundary conditions (Bi) on temperature (θ) play a significant role
in understanding the heat transfer characteristics of biofluids. Hence the
present section shows the effects of yield stress (τ), porous parameter
(Da), velocity slip parameter (α), angle of inclination (β), amplitude
ratio (ε), thermal conductivity (φ), Biot number (Bi) and Brinkmann
number (Br) on physiological quantities.

4.1. Velocity profile

The effects of pertinent parameters on velocity distribution in the pres-
ence and absence of variable viscosity are elucidated through Fig. 2.
Velocity profiles exhibit a parabolic nature with a maximum velocity oc-
curs at the center of the tube. Fig. 2a is sketched to show the variation of
τ on velocity profile. Here velocity profile decreases for higher values of
τ . Also, the peak velocity is attained when τ = 0. This is because of the
yield stress parameter present in the model requires some amount of en-
ergy to begin the flow and hence an increase in the value of this parameter
results in a decrease in the velocity. Figs 2b and 2c are drawn to show the
effects of Da and α on velocity. Results indicate that the velocity is an
increasing function of Da. However, the opposite behavior is noticed for
higher values of α. Fig. 2d indicates that the velocity field enhances for
an increase in the value of β. However, in all the cases, the velocity field
enhance for a higher value of viscosity (α1 = 0.1). Thus, the presence
of variable viscosity plays a vital role in enhancing the velocity field in
an inclined porous tube.

4.2. Temperature profile

The effects of α, τ,Da, φ,Bi and Br on temperature are plotted and
discussed in the Figs. 3 and 4. Fig. 3a shows the variation of α1 on
temperature. From the figure, it is clear that the temperature diminishes
for higher values of variable viscosity. This decay in temperature subject
to a decrease in α1 is uniform throughout the tube. Fig. 3b reveals that
the enhancement in the magnitude of temperature is because of the higher
values of τ . Fig. 4a portrays the variation ofDa on temperature. Here the
decay in temperature is observed near the axis of the tube, and opposite
behavior is noticed near the walls of the tube. Fig. 4b is graphed to
illustrate the effect of φ on temperature. An increment in φ results in
an increase in the temperature near the axis of the tube and the effect is
negligible as we move towards the wall. This is because higher values
of φ allow the fluid to dissipate or absorb the heat to its surroundings.
Thus, when the temperature of the fluid is lower than the temperature of
the boundary, an increment in the value of φ enhances the temperature
near the axis of the tube. Fig. 4c depicts the variation of temperature
due to the influence of Bi. An increase in the value of Bi results in the
reduction of temperature. Fig. 4d shows the effect of Br on temperature.
Here an increment in Br enhances the temperature. Because Br occurs
due to the viscous dissipation effects and it enhances the temperature.

4.3. Pumping characteristics

Pressure rise per wavelength is analysed in three different regions which
are pumping region (∆P > 0, Q̄ > 0), free pumping region (∆P = 0)
and augmented region (∆P < 0, Q̄ < 0). The quantitative analysis
for the effects of pertinent parameters on pumping performance in the
intervals for Q̄, when ∆P > 0 and ∆P < 0 are presented in Table 1.
We observe that an increase in the value ofDa and β increases the length
of the interval in the pumping region and opposite behavior is observed
in the augmented region. This is mainly because an increase in the value
of Da increases the porosity of the wall and thus Q̄ decreases. Also, for
a fixed value of Da and β, the length of the pumping region increases

in the case of variable viscosity with that of constant viscosity. Further,
the effects of τ, α, and ε decrease the length of the interval for ∆P > 0
and opposite behavior is observed when viscosity increases from 0 to 0.1.
This information on τ helps in equalizing the pumping rate of Newtonian
and Casson fluid for some value of Q̄ by adjusting the peristalsis velocity.

Fig. 2 Velocity profile for varying (a) yield stress, (b) porous parameter,
(c) velocity slip parameter and (d) angle of inclination.
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Fig. 3 Temperature profile for varying (a) variable viscosity and (b) yield
stress

4.4. Trapping Phenomenon

The most fundamental part of peristalsis is trapping. It is the formation
of the inside flowing bolus. This phenomenon is helpful in understand-
ing the movement of the gastrointestinal tract and in the arrangement of
thrombus in veins. Fig. 5 reveals that an increase in the value of α dimin-
ishes the size of the trapped bolus. Figs. 6 and 7 represents the impact of
τ and Da on the trapped bolus. An expansion in the estimation of τ and
Da enhances the volume of the trapped bolus.

5. CONCLUSIONS

The present investigation analyzes the impact of variable liquid properties
on the peristaltic mechanism of Casson liquid in an inclined porous tube.
The examination finds its application in understanding the complex rhe-
ological behavior of biological fluids. Specifically, the flow of blood in
narrow arteries and the movement of chyme in the gastrointestinal tract.
The future investigation can be made by including the magnetic effect to
the present model so that it can give a better understanding of the flow
of blood when exposed to an external magnetic field. The main findings
from the current model are listed below:

• The axial velocity field is an increasing function of Da, ε, and β
while it reduces for τ and α.

• The magnitude of temperature decreases for higher value of α1 and
Bi, and it increases for an increase in the value of τ .

• Temperature of the fluid enhances for a larger value of φ.

• Pressure rise enhances for τ, α, β and ε, and it diminishes for Da.

• Variable viscosity plays a significant role in enhancing pressure
rise.

• The size of trapped bolus increases for τ,Da and ε, and it reduces
for α.

Fig. 4 Temperature profile for varying (a) porous parameter, (b) variable
thermal conductivity, (c) Biot number and (d) Brinkmann number.

5



Frontiers in Heat and Mass Transfer (FHMT), 11, 35 (2018)
DOI: 10.5098/hmt.11.35

Global Digital Central
ISSN: 2151-8629

Fig. 5 Streamlines for varying (a) α = 0.2, (b) α = 0.22, (c) α = 0.24
and (d) α = 0.26.

Fig. 6 Streamlines for varying (a) τ = 0.1, (b) τ = 0.2, (c) τ = 0.3 and
(d) τ = 0.4.

Fig. 7 Streamlines for varying (a) Da = 0.01, (b) Da = 0.02, (c) Da =
0.03 and (d) Da = 0.04.

NOMENCLATURE

a radius of the tube
b amplitude
t time
c wave speed
p pressure
P pressure gradient
Pr Prandtl number
Ec Eckert number
Br Brinkmann number
Da porous parameter (Darcy number)
F1 body force parameter
Bi Biot number
r, z radial and axial coordinates
u,w velocity in radial and axial directions
q volumetric flow rate
Re Reynolda number
Q̄ time averaged volumetric flow rate
∆P Pressure rise
cp specific heat at constant pressure
k thermal conductivity
g acceleratio due to gravity
Greek Symbols
α velocity slip parameter
α1 coefficient of variable viscosity
β angle of incliation
φ coefficient of variable thermal conductivity
λ wavelength
τ ratio of yield stress to wall shearing stress
τ0 yield stress
µ viscosity of the fluid
µ0 constant viscosity
ε amplitude ratio
ψ stream function
θ temperature
δ wave number
ρ density
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Table 1 Interval for time averaged flow rateQ across one wavelength for different values of the physiological parameters when F1 = 0.1 and t = 0.01.

Parameters α1 = 0 α1 = 0

ε τ β α Da ∆P > 0 ∆P < 0 ∆P > 0 ∆P < 0

0.5 0.2 π
4

0.2 0 0<Q<1.182 1.182<Q<2 0<Q <1.185 1.185<Q<2
0.01 0<Q<1.312 1.312<Q<2 0<Q <1.338 1.338<Q<2
0.015 0<Q<1.342 1.342<Q<2 0<Q <1.372 1.372<Q<2
0.02 0<Q<1.366 1.366<Q<2 0<Q <1.401 1.401<Q<2

0.5 0.2 π
4

0.1 0.02 0<Q<1.551 1.551<Q<2 0<Q <1.618 1.618<Q<2
0.2 0<Q<1.366 1.366<Q<2 0<Q <1.401 1.401<Q<2
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APPENDIX

The expressions that appear in sections 2 and 3 are listed as follows
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